
. .

. .

Ph.D. Thesis Defense:
High-Speed Autonomous Obstacle
Avoidance with Pushbroom Stereo

Andrew Barry

1

Robot Locomotion Group
Massachusetts Institute of Technology

2

3

This thesis:

I 100% on-board perception

I 100% on-board computation

I No prior knowledge of the environment

4

This thesis:

I 100% on-board perception

I 100% on-board computation

I No prior knowledge of the environment

4

This thesis:

I 100% on-board perception

I 100% on-board computation

I No prior knowledge of the environment

4

This thesis:

I 100% on-board perception

I 100% on-board computation

I No prior knowledge of the environment

4

Hard for the Right Reasons

Significant novelty required to fly around trees:

1. Fast, lightweight sensing

2. Fast control, integrated with sensing

3. Platform that can support (1) and (2)

5

Hard for the Right Reasons

Significant novelty required to fly around trees:

1. Fast, lightweight sensing

2. Fast control, integrated with sensing

3. Platform that can support (1) and (2)

5

Hard for the Right Reasons

Significant novelty required to fly around trees:

1. Fast, lightweight sensing

2. Fast control, integrated with sensing

3. Platform that can support (1) and (2)

5

Hard for the Right Reasons

Significant novelty required to fly around trees:

1. Fast, lightweight sensing

2. Fast control, integrated with sensing

3. Platform that can support (1) and (2)

5

Related works
Huge progress in the last 15 years:

I Larger UAVs 1,2

2

I Max takeoff weight 94kg (145 times heavier than our aircraft)

1Gavrilets et al., “Flight test and simulation results for an autonomous
aerobatic helicopter”. 2002.

2Scherer et al., “Flying Fast and Low Among Obstacles”. 2007.

6

Related works
Huge progress in the last 15 years:

I Larger UAVs 1,2

2

I Max takeoff weight 94kg (145 times heavier than our aircraft)

1Gavrilets et al., “Flight test and simulation results for an autonomous
aerobatic helicopter”. 2002.

2Scherer et al., “Flying Fast and Low Among Obstacles”. 2007.
6

Related works
Huge progress in the last 15 years:

I Larger UAVs 1,2

2

I Max takeoff weight 94kg (145 times heavier than our aircraft)

1Gavrilets et al., “Flight test and simulation results for an autonomous
aerobatic helicopter”. 2002.

2Scherer et al., “Flying Fast and Low Among Obstacles”. 2007.
6

Related works
Huge progress in the last 15 years:

I Larger UAVs 1,2

2

I Max takeoff weight 94kg (145 times heavier than our aircraft)

1Gavrilets et al., “Flight test and simulation results for an autonomous
aerobatic helicopter”. 2002.

2Scherer et al., “Flying Fast and Low Among Obstacles”. 2007.
6

Related works
I Micro aerial vehicles, or MAVs (under ∼ 5kg)
I Highly aggressive trajectories in motion capture 3,4,5

(3)

(5)

3Mellinger and Kumar, “Minimum snap trajectory generation and control
for quadrotors”. 2011.

4Hehn and D’Andrea, “A flying inverted pendulum”. 2011.
5Barry et al., “Flying Between Obstacles with an Autonomous Knife-Edge

Maneuver”. 2014.
7

Related works

I Flight through obstacles with a known map 6

I Environment not known until runtime 7

(6) (7)

6Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

7Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

8

Related Work

Micro Aerial Vehicle (MAV) obstacle avoidance:

2 4 6 8 10 12 140

Speed (m/s)

Motion capture

Prior map

Optic flow

3D offboard

3D onboard

M
o
re

 I
n
te

g
ra

te
d

 S
e
n
si

n
g

1

5 3

2 4

8 6

7 9
: This thesis

1: Beyeler, 2009

2: Mellinger, 2010

3: Bry, 2012

4: Barry, 2012

5: Richter, 2013

6: Ross, 2013

7: Shen, 2013

8: Dey, 2015

9: Oleynikova, 2015

9

Related Work

Micro Aerial Vehicle (MAV) obstacle avoidance:

2 4 6 8 10 12 140

Speed (m/s)

Motion capture

Prior map

Optic flow

3D offboard

3D onboard

M
o
re

 I
n
te

g
ra

te
d

 S
e
n
si

n
g

1

5 3

2 4

8 6

7 9
: This thesis

1: Beyeler, 2009

2: Mellinger, 2010

3: Bry, 2012

4: Barry, 2012

5: Richter, 2013

6: Ross, 2013

7: Shen, 2013

8: Dey, 2015

9: Oleynikova, 2015

9

Planning and Control

Good ideas exist:

I Differential flatness 8,9

I Nonlinear model predictive control (MPC) 10

I Trajectory libraries 11,12

I Time-varying linear quadratic regulators for stabilization
(TVLQR) 13

8Sira-Raḿırez and Agrawal, Differentially Flat Systems. 2004.
9Mellinger and Kumar, “Minimum snap trajectory generation and control

for quadrotors”. 2011.
10Singh and Fuller, “Trajectory generation for a UAV in urban terrain, using

nonlinear MPC”. 2001.
11Frazzoli, Dahleh, and Feron, “Robust hybrid control for autonomous

vehicle motion planning”. 2000.
12Stolle and Atkeson, “Policies based on trajectory libraries”. 2006.
13Tedrake et al., “Learning to Fly like a Bird”. 2009.

10

Planning and Control

Good ideas exist:

I Differential flatness 8,9

I Nonlinear model predictive control (MPC) 10

I Trajectory libraries 11,12

I Time-varying linear quadratic regulators for stabilization
(TVLQR) 13

8Sira-Raḿırez and Agrawal, Differentially Flat Systems. 2004.
9Mellinger and Kumar, “Minimum snap trajectory generation and control

for quadrotors”. 2011.

10Singh and Fuller, “Trajectory generation for a UAV in urban terrain, using
nonlinear MPC”. 2001.

11Frazzoli, Dahleh, and Feron, “Robust hybrid control for autonomous
vehicle motion planning”. 2000.

12Stolle and Atkeson, “Policies based on trajectory libraries”. 2006.
13Tedrake et al., “Learning to Fly like a Bird”. 2009.

10

Planning and Control

Good ideas exist:

I Differential flatness 8,9

I Nonlinear model predictive control (MPC) 10

I Trajectory libraries 11,12

I Time-varying linear quadratic regulators for stabilization
(TVLQR) 13

8Sira-Raḿırez and Agrawal, Differentially Flat Systems. 2004.
9Mellinger and Kumar, “Minimum snap trajectory generation and control

for quadrotors”. 2011.
10Singh and Fuller, “Trajectory generation for a UAV in urban terrain, using

nonlinear MPC”. 2001.

11Frazzoli, Dahleh, and Feron, “Robust hybrid control for autonomous
vehicle motion planning”. 2000.

12Stolle and Atkeson, “Policies based on trajectory libraries”. 2006.
13Tedrake et al., “Learning to Fly like a Bird”. 2009.

10

Planning and Control

Good ideas exist:

I Differential flatness 8,9

I Nonlinear model predictive control (MPC) 10

I Trajectory libraries 11,12

I Time-varying linear quadratic regulators for stabilization
(TVLQR) 13

8Sira-Raḿırez and Agrawal, Differentially Flat Systems. 2004.
9Mellinger and Kumar, “Minimum snap trajectory generation and control

for quadrotors”. 2011.
10Singh and Fuller, “Trajectory generation for a UAV in urban terrain, using

nonlinear MPC”. 2001.
11Frazzoli, Dahleh, and Feron, “Robust hybrid control for autonomous

vehicle motion planning”. 2000.
12Stolle and Atkeson, “Policies based on trajectory libraries”. 2006.

13Tedrake et al., “Learning to Fly like a Bird”. 2009.

10

Planning and Control

Good ideas exist:

I Differential flatness 8,9

I Nonlinear model predictive control (MPC) 10

I Trajectory libraries 11,12

I Time-varying linear quadratic regulators for stabilization
(TVLQR) 13

8Sira-Raḿırez and Agrawal, Differentially Flat Systems. 2004.
9Mellinger and Kumar, “Minimum snap trajectory generation and control

for quadrotors”. 2011.
10Singh and Fuller, “Trajectory generation for a UAV in urban terrain, using

nonlinear MPC”. 2001.
11Frazzoli, Dahleh, and Feron, “Robust hybrid control for autonomous

vehicle motion planning”. 2000.
12Stolle and Atkeson, “Policies based on trajectory libraries”. 2006.
13Tedrake et al., “Learning to Fly like a Bird”. 2009.

10

Sensing

Non-visual sensors:

I LIDAR

I localization in a map 14

I Kinect / active IR sensors

I indoor exploration 15

14Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

15Michael et al., “Collaborative mapping of an earthquake-damaged building
via ground and aerial robots”. 2012.

11

Sensing

Non-visual sensors:

I LIDAR

I localization in a map 14

I Kinect / active IR sensors

I indoor exploration 15

14Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

15Michael et al., “Collaborative mapping of an earthquake-damaged building
via ground and aerial robots”. 2012.

11

Sensing

Non-visual sensors:

I LIDAR
I localization in a map 14

I Kinect / active IR sensors

I indoor exploration 15

14Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

15Michael et al., “Collaborative mapping of an earthquake-damaged building
via ground and aerial robots”. 2012.

11

Sensing

Non-visual sensors:

I LIDAR
I localization in a map 14

I Kinect / active IR sensors

I indoor exploration 15

14Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

15Michael et al., “Collaborative mapping of an earthquake-damaged building
via ground and aerial robots”. 2012.

11

Sensing

Non-visual sensors:

I LIDAR
I localization in a map 14

I Kinect / active IR sensors
I indoor exploration 15

14Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

15Michael et al., “Collaborative mapping of an earthquake-damaged building
via ground and aerial robots”. 2012.

11

Vision

I Monocular vision
I offboard depth estimation and control through a forest 16

I Embedded optical flow (optical mice sensors)
I high rate, low resolution obstacle detection 17

(16) (17)

16Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

17Beyeler, Zufferey, and Floreano, “Vision-based control of near-obstacle
flight”. 2009.

12

Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.

13

Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.

13

Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.

13

Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.

13

Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.

13

Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.

13

Contributions

1. A novel, fast stereo algorithm for obstacle detection

2. High-speed control algorithms for integrating vision

3. A demonstration platform

14

Contributions

1. A novel, fast stereo algorithm for obstacle detection

2. High-speed control algorithms for integrating vision

3. A demonstration platform

14

Contributions

1. A novel, fast stereo algorithm for obstacle detection

2. High-speed control algorithms for integrating vision

3. A demonstration platform

14

Contributions

1. A novel, fast stereo algorithm for obstacle detection

2. High-speed control algorithms for integrating vision

3. A demonstration platform

14

Stereo vision

15

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Block-Matching Stereo Vision

Left Right

17

Issue: this search takes a long time.

I On flight hardware: 5-10
frames per second

I Quad core ARM, 1.7Ghz
I 376x240 grayscale image

010 fps: 1.2m / frame
120 fps: 0.1m / frame

ODROID-U3 computer
(image courtesy Hardkernel co., Ltd.)

18

Issue: this search takes a long time.

I On flight hardware: 5-10
frames per second

I Quad core ARM, 1.7Ghz
I 376x240 grayscale image

010 fps: 1.2m / frame

120 fps: 0.1m / frame

ODROID-U3 computer
(image courtesy Hardkernel co., Ltd.)

18

Issue: this search takes a long time.

I On flight hardware: 5-10
frames per second

I Quad core ARM, 1.7Ghz
I 376x240 grayscale image

010 fps: 1.2m / frame
120 fps: 0.1m / frame

ODROID-U3 computer
(image courtesy Hardkernel co., Ltd.)

18

Idea: Don’t do the search

Instead, ask: is this pixel block 10 meters away?

19

Pushbroom Stereo

Left Right

20

Pushbroom Stereo

Left Right

20

Pushbroom Stereo

Left Right

20

Pushbroom Stereo

Left Right

20

Pushbroom Stereo

I Aircraft is moving faster than almost anything in the
environment

D
etection area

v

?

?

?
??

?

?
?

21

Pushbroom Stereo

I Aircraft is moving faster than almost anything in the
environment

D
etection area

v

21

Pushbroom Stereo

I Aircraft is moving faster than almost anything in the
environment

D
etection area

v

21

Pushbroom Stereo

I Aircraft is moving faster than almost anything in the
environment

D
etection area

v

21

Pushbroom Stereo

I Aircraft is moving faster than almost anything in the
environment

D
etection area

v

21

Visual Horizontal Invariance

Issue: Horizon exhibits substantial visual horizontal invariance.

I On the 5x5 pixel block level

Left Right

?

22

Filtering Visual Horizontal Invariance
What is different about these false-positives?

I They have another match nearby.

Strategy: Search for a second match at the disparity
corresponding to distances > 15 meters away.

I In practice, calibration is not perfect, so search many
possibilities near that region

Detections on horizon

Without invariance filter. With invariance filter.

23

Filtering Visual Horizontal Invariance
What is different about these false-positives?

I They have another match nearby.

Strategy: Search for a second match at the disparity
corresponding to distances > 15 meters away.

I In practice, calibration is not perfect, so search many
possibilities near that region

Detections on horizon

Without invariance filter. With invariance filter.

23

Filtering Visual Horizontal Invariance
What is different about these false-positives?

I They have another match nearby.

Strategy: Search for a second match at the disparity
corresponding to distances > 15 meters away.

I In practice, calibration is not perfect, so search many
possibilities near that region

Detections on horizon

Without invariance filter. With invariance filter.

23

Filtering Visual Horizontal Invariance
What is different about these false-positives?

I They have another match nearby.

Strategy: Search for a second match at the disparity
corresponding to distances > 15 meters away.

I In practice, calibration is not perfect, so search many
possibilities near that region

Detections on horizon

Without invariance filter. With invariance filter.

23

Filtering Visual Horizontal Invariance
What is different about these false-positives?

I They have another match nearby.

Strategy: Search for a second match at the disparity
corresponding to distances > 15 meters away.

I In practice, calibration is not perfect, so search many
possibilities near that region

Detections on horizon

Without invariance filter. With invariance filter.

23

Pushbroom stereo implementation

120 frames per second

I Fully multithreaded

I Single-instruction
multiple-data (ARM
NEON SIMD)

I Leaves 1x computer
available for control
processing

ODROID-U3 computer
(image courtesy Hardkernel co., Ltd.)

24

Note: all flights have an onboard safety tether

25

False-Positive Benchmark

= detection at 5 meters

27

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

28

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

28

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

28

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

28

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

OpenCV StereoPushbroom StereoComputed Distance
28

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

OpenCV StereoPushbroom StereoComputed Distance
28

False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points

OpenCV StereoPushbroom StereoComputed Distance

false-positive

28

False-Positive Benchmark

On over 23,000+ frames:

I Pushbroom stereo
produces points
within:

I 1.0 meters of
StereoBM 71.2%
of the time

I 2.0 meters of
StereoBM 81.0%
of the time

Separation (meters)

0 2 4 6

F
ra

c
ti
o

n
 o

f
P

ix
e

ls

0

0.2

0.4

0.6

0.8

1

29

False-Positive Benchmark

On over 23,000+ frames:

I Pushbroom stereo
produces points
within:

I 1.0 meters of
StereoBM 71.2%
of the time

I 2.0 meters of
StereoBM 81.0%
of the time

Separation (meters)

0 2 4 6

F
ra

c
ti
o

n
 o

f
P

ix
e

ls

0

0.2

0.4

0.6

0.8

1

29

False-Positive Benchmark

On over 23,000+ frames:

I Pushbroom stereo
produces points
within:

I 1.0 meters of
StereoBM 71.2%
of the time

I 2.0 meters of
StereoBM 81.0%
of the time

Separation (meters)

0 2 4 6

F
ra

c
ti
o

n
 o

f
P

ix
e

ls

0

0.2

0.4

0.6

0.8

1

29

False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM)

30

False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM)

30

False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM)

30

False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM)

30

False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM)

30

False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM) false-nega

tives
(missed t

hese)
30

False-Negative Benchmark

I Pushbroom stereo
misses points that
Stereo BM detects
by:

I 1.0 meters of
StereoBM 67.6%
of the time

I 2.0 meters of
StereoBM 91.3%
of the time

Separation (meters)

0 2 4 6

F
ra

c
ti
o

n
 o

f
P

ix
e

ls

0

0.2

0.4

0.6

0.8

1

31

False-Negative Benchmark

I Pushbroom stereo
misses points that
Stereo BM detects
by:

I 1.0 meters of
StereoBM 67.6%
of the time

I 2.0 meters of
StereoBM 91.3%
of the time

Separation (meters)

0 2 4 6

F
ra

c
ti
o

n
 o

f
P

ix
e

ls

0

0.2

0.4

0.6

0.8

1

31

False-Negative Benchmark

I Pushbroom stereo
misses points that
Stereo BM detects
by:

I 1.0 meters of
StereoBM 67.6%
of the time

I 2.0 meters of
StereoBM 91.3%
of the time

Separation (meters)

0 2 4 6

F
ra

c
ti
o

n
 o

f
P

ix
e

ls

0

0.2

0.4

0.6

0.8

1

31

Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:

I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

32

Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:

I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

32

Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:

I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

32

Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:

I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

32

Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:
I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

32

Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:
I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

32

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo

33

34

35

26 MPH

36

26 MPH 147 ft

37

26 MPH 147 ft
pitch/roll

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

39

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

39

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

39

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

39

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

39

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

39

Trajectory Libraries

I Precomputed trajectories

I Choose trajectory to execute online

I Used on other robots for some time 24,25,26

24Atkeson, “Using Local Trajectory Optimizers to Speed Up Global
Optimization in Dynamic Programming”. 1994.

25Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

26Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

40

Trajectory Libraries

I Precomputed trajectories

I Choose trajectory to execute online

I Used on other robots for some time 24,25,26

24Atkeson, “Using Local Trajectory Optimizers to Speed Up Global
Optimization in Dynamic Programming”. 1994.

25Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

26Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

40

Trajectory Libraries

I Precomputed trajectories

I Choose trajectory to execute online

I Used on other robots for some time 24,25,26

24Atkeson, “Using Local Trajectory Optimizers to Speed Up Global
Optimization in Dynamic Programming”. 1994.

25Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

26Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

40

Trajectory Libraries

I Precomputed trajectories

I Choose trajectory to execute online

I Used on other robots for some time 24,25,26

24Atkeson, “Using Local Trajectory Optimizers to Speed Up Global
Optimization in Dynamic Programming”. 1994.

25Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

26Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

40

Trajectory Libraries

I Precomputed trajectories

I Choose trajectory to execute online

I Used on other robots for some time 24,25,26

24Atkeson, “Using Local Trajectory Optimizers to Speed Up Global
Optimization in Dynamic Programming”. 1994.

25Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

26Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

40

Building trajectories

41

Building trajectories

41

A model-based approach

Model-based design allows:

I Optimization of trim conditions, trajectories, and controllers

I Easy conversion to other airframes

I Safety verification

42

A model-based approach

Model-based design allows:

I Optimization of trim conditions, trajectories, and controllers

I Easy conversion to other airframes

I Safety verification

42

A model-based approach

Model-based design allows:

I Optimization of trim conditions, trajectories, and controllers

I Easy conversion to other airframes

I Safety verification

42

A model-based approach

Model-based design allows:

I Optimization of trim conditions, trajectories, and controllers

I Easy conversion to other airframes

I Safety verification

42

Aircraft model

Nonlinear model: ẋ = f (x , u)

I state vector
I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector
I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle

43

Aircraft model

Nonlinear model: ẋ = f (x , u)

I state vector

I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector
I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle

43

Aircraft model

Nonlinear model: ẋ = f (x , u)

I state vector
I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector
I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle

43

Aircraft model

Nonlinear model: ẋ = f (x , u)

I state vector
I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector

I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle

43

Aircraft model

Nonlinear model: ẋ = f (x , u)

I state vector
I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector
I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle

43

Aircraft model

ẋ = f (

state︷︸︸︷
x , u︸︷︷︸

control input

)

flat-plate dynamics

44

Aircraft model

ẋ = f (

state︷︸︸︷
x , u︸︷︷︸

control input

)

flat-plate dynamics

44

Aircraft model

ẋ = f (

state︷︸︸︷
x , u︸︷︷︸

control input

)

flat-plate dynamics

44

Aircraft model

ẋ = f (

state︷︸︸︷
x , u︸︷︷︸

control input

)

flat-plate dynamics

44

Control about a trim condition

Straight and level flight:

ẋ = f (x , u)

x =
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
roll pitch yaw

ẋ =
[
ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸

accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

45

Control about a trim condition

Straight and level flight:

ẋ = f (x , u)

x =
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
roll pitch yaw

ẋ =
[
ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸

accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

45

Control about a trim condition

Straight and level flight:

ẋ = f (x , u)

x =
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
roll pitch yaw

ẋ =
[
ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸

accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

45

Searching for a trim condition

find

state and control input︷ ︸︸ ︷
x0,u0

s.t.

accelerations = 0, ⇐ 6 nonlinear constraints

u0 ≥ umin, ⇐ 3 linear constraints

u0 ≤ umax ⇐ 3 linear constraints

giving x0 and u0

46

Searching for a trim condition

find

state and control input︷ ︸︸ ︷
x0,u0

s.t.

accelerations = 0, ⇐ 6 nonlinear constraints

u0 ≥ umin, ⇐ 3 linear constraints

u0 ≤ umax ⇐ 3 linear constraints

giving x0 and u0

46

Searching for a trim condition

find

state and control input︷ ︸︸ ︷
x0,u0

s.t.

accelerations = 0, ⇐ 6 nonlinear constraints

u0 ≥ umin, ⇐ 3 linear constraints

u0 ≤ umax ⇐ 3 linear constraints

giving x0 and u0

46

Searching for a trim condition

find

state and control input︷ ︸︸ ︷
x0,u0

s.t.

accelerations = 0, ⇐ 6 nonlinear constraints

u0 ≥ umin, ⇐ 3 linear constraints

u0 ≤ umax ⇐ 3 linear constraints

giving x0 and u0

46

Searching for a trim condition

find

state and control input︷ ︸︸ ︷
x0,u0

s.t.

accelerations = 0, ⇐ 6 nonlinear constraints

u0 ≥ umin, ⇐ 3 linear constraints

u0 ≤ umax ⇐ 3 linear constraints

giving x0 and u0

46

Stabilizing the trim condition

Using standard nonlinear control techniques:

x̄ = x︸︷︷︸
current state

− x0︸︷︷︸
desired state

ū = −K︸︷︷︸
LQR gain

x̄

u︸︷︷︸
control input

= ū + u0

With our model, we can linearize about the trim condition

I (Taylor approximate our nonlinear model)

giving: ˙̄x = Ax̄ + Bū

allowing us to use linear control

47

Stabilizing the trim condition

Using standard nonlinear control techniques:

x̄ = x︸︷︷︸
current state

− x0︸︷︷︸
desired state

ū = −K︸︷︷︸
LQR gain

x̄

u︸︷︷︸
control input

= ū + u0

With our model, we can linearize about the trim condition

I (Taylor approximate our nonlinear model)

giving: ˙̄x = Ax̄ + Bū

allowing us to use linear control

47

Stabilizing the trim condition

Using standard nonlinear control techniques:

x̄ = x︸︷︷︸
current state

− x0︸︷︷︸
desired state

ū = −K︸︷︷︸
LQR gain

x̄

u︸︷︷︸
control input

= ū + u0

With our model, we can linearize about the trim condition

I (Taylor approximate our nonlinear model)

giving: ˙̄x = Ax̄ + Bū

allowing us to use linear control

47

Stabilizing the trim condition

Using standard nonlinear control techniques:

x̄ = x︸︷︷︸
current state

− x0︸︷︷︸
desired state

ū = −K︸︷︷︸
LQR gain

x̄

u︸︷︷︸
control input

= ū + u0

With our model, we can linearize about the trim condition

I (Taylor approximate our nonlinear model)

giving: ˙̄x = Ax̄ + Bū

allowing us to use linear control

47

48

49

Manual / auto

Autonomous Takeoff

Set ż > 0:

(don’t change the gains)

ẋ =
[

ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸
accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

forward velocity
climbing

giving x0 and u0

51

Autonomous Takeoff

Set ż > 0:

(don’t change the gains)

ẋ =
[

ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸
accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

forward velocity
climbing

giving x0 and u0

51

Autonomous Takeoff

Set ż > 0:

(don’t change the gains)

ẋ =
[

ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸
accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

forward velocity
climbing

giving x0 and u0

51

53

54

Dynamic Maneuvers

55

Dynamic Maneuvers

Not a trim condition

55

Dynamic Maneuvers

Two options for finding an open-loop trajectory:

1. Trajectories from manual flights

2. Trajectory optimization

56

Dynamic Maneuvers

Two options for finding an open-loop trajectory:

1. Trajectories from manual flights

2. Trajectory optimization

56

Dynamic Maneuvers

Two options for finding an open-loop trajectory:

1. Trajectories from manual flights

2. Trajectory optimization

56

Trajectories from manual flights

57

Trajectory optimization

I Optimize over x(t) and u(t) to find an open loop trajectory

59

Trajectory optimization

I Optimize over x(t) and u(t) to find an open loop trajectory

59

Knife-edge: x , y , and z tracking

Time (s)

170 170.5 171 171.5

X
 (

m
)

-115

-110

-105

-100

-95

-90

Actual

Planned

Time (s)

170 170.5 171 171.5

Y
 (

m
)

-200

-195

-190

-185

-180

-175

Actual

Planned

Time (s)

170 170.5 171 171.5

Z
 (

m
)

75

80

85

Actual

Planned

62

Dotted vertical
lines: trajectory
change

Knife-edge: roll, pitch, and yaw

Time (s)

170 170.5 171 171.5

R
o

ll
(d

e
g

)

-50

0

50

100

150

Actual

Planned

Time (s)

170 170.5 171 171.5

P
it
c
h

 (
d

e
g

)

-40

-30

-20

-10

0

10

20

30

40

Actual

Planned

Time (s)

170 170.5 171 171.5

Y
a

w
 (

d
e

g
)

0

50

100

150

200

Actual

Planned

63

Knife-edge: control actions

Time (s)

170 170.5 171 171.5

L
e

ft
 c

o
n

tr
o

l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-50

0

50

Actual

Planned

Time (s)

170 170.5 171 171.5
R

ig
h

t
c
o

n
tr

o
l
s
u

rf
a

c
e

 d
e

fl
e

c
ti
o

n
 (

d
e

g
)

-40

-20

0

20

40

60

Actual

Planned

64

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

65

Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning

65

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms

66

Experiments

67

Experimental plan

(autonomous modes in blue)

Takeoff from
catapult
launcher

Control
(no throttle) Clear cable Climb

Cruise
/ avoid

Manual
landing

68

Autonomous takeoff from launcher

69

Autonomous obstacle avoidance

72

Analysis

Used a simple trajectory library:

Description Type Length Produced
1 Straight Trim ∞ Model
2 Climb Trim ∞ Model
3 Takeoff (no throttle) Trim ∞ Model
4 Gentle left Trim ∞ Model
5 Gentle right Trim ∞ Model
6 Left jog Dynamic 2.45s Flight data
7 Right jog Dynamic 2.49s Flight data

76

x , y , and z tracking

Time (s)

85 85.5 86 86.5 87 87.5

X
 (

m
)

80

85

90

95

100

105

110

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

Y
 (

m
)

-150

-140

-130

-120

-110

-100

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

Z
 (

m
)

0

2

4

6

8

10

Actual

Planned

78

Roll, pitch, and yaw

Time (s)

85 85.5 86 86.5 87 87.5

R
o
ll

(d
e
g
)

-40

-20

0

20

40

60

80

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

P
it
c
h
 (

d
e
g
)

-40

-30

-20

-10

0

10

Actual

Planned

Time (s)

85 85.5 86 86.5 87 87.5

Y
a

w
 (

d
e

g
)

-160

-140

-120

-100

-80

-60

Actual

Planned

79

Add a chase plane:

Autonomous plane

Manual chase plane

82

Aggregate Analysis

Over 16 successful flights:

I 1.5km flown autonomously

I 7,951 stereo matches
detected

I 163 trajectories executed

I 131 seconds in autonomous
mode

I with an average speed of
12.1m/s (27mph)

0

1

2

3

4

Le
ve

l fli
gh

t
Clim

b
Glide

Gen
tle

 le
ft

Gen
tle

 rig
ht

Le
ft j

og

Righ
t jo

g

Trajectory

N
um

be
r o

f E
xe

cu
tio

ns
 p

er
 F

lig
ht

85

Aggregate Analysis

Over 16 successful flights:

I 1.5km flown autonomously

I 7,951 stereo matches
detected

I 163 trajectories executed

I 131 seconds in autonomous
mode

I with an average speed of
12.1m/s (27mph)

0

1

2

3

4

Le
ve

l fli
gh

t
Clim

b
Glide

Gen
tle

 le
ft

Gen
tle

 rig
ht

Le
ft j

og

Righ
t jo

g

Trajectory
N

um
be

r o
f E

xe
cu

tio
ns

 p
er

 F
lig

ht

85

3 environments:

86

87

88

89

Obstacles
(closer)

Obstacles
(farther)

Failure Analysis

Obstacle type Total flights Successes Success ratio
Artificial 4 4 100%
Pair of trees 4 4 100%
Many trees 18 8 44%

I Failures were split between vision and control equally:

90

Failure Analysis

Obstacle type Total flights Successes Success ratio
Artificial 4 4 100%
Pair of trees 4 4 100%
Many trees 18 8 44%

I Failures were split between vision and control equally:

90

Failure Analysis: Vision

Failure Type Occurrences
Vision failures 5

Failed to see obstacle 1
Poor calibration 2
No video data / unknown vision failure 2

91

Failure Analysis: Vision
Failed to see obstacle a combination of:

1. Low contrast obstacles (grey leaves over sky)

2. High angular rate occludes obstacle until it is closer than 10m

92

Failure Analysis: Control

Failure Type Occurrences
Control failures 5

Insufficiently rich maneuver library 2
Trajectory initial state 2
Loss of control 1

93

Insufficiently rich maneuver library

I No “turn 90◦“ trajectory available

94

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll

95

Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is: hard right roll

95

Time (s)
125.5 126 126.5 127 127.5

R
ol

l (
de

g)

-40

-20

0

20

40

60

Actual
Planned

Incorrect action
at trajectory start

Recovery from
impact

99

Time (s)
125.5 126 126.5 127 127.5

Ya
w

 (d
eg

)

-100

-50

0

50

100

150
Actual
Planned

Impact with obstacle

100

Time (s)
125.5 126 126.5 127 127.5

Le
ft

co
nt

ro
l s

ur
fa

ce
 d

ef
le

ct
io

n
(d

eg
)

-40

-30

-20

-10

0

10

20

30

40

Actual
Planned

Incorrect action
at trajectory start

Impact event

101

Moving forward

Trajectory libraries:
I Multiple starting states in trajectory library
I Verification for switching trajectories like 27

(27)

27Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016. 102

Moving forward

Wind:

I Onboard wind sensing 28

I Control through wind 29,30

28Xue et al., “Refraction wiggles for measuring fluid depth and velocity from
video”. 2014.

29Majumdar and Tedrake, “Robust Online Motion Planning with Regions of
Finite Time Invariance”. 2012.

30Moore, “Robust Post-Stall Perching with a Fixed-Wing UAV”. 2014.

103

Moving forward

Wind:

I Onboard wind sensing 28

I Control through wind 29,30

28Xue et al., “Refraction wiggles for measuring fluid depth and velocity from
video”. 2014.

29Majumdar and Tedrake, “Robust Online Motion Planning with Regions of
Finite Time Invariance”. 2012.

30Moore, “Robust Post-Stall Perching with a Fixed-Wing UAV”. 2014.

103

Moving forward

Wind:

I Onboard wind sensing 28

I Control through wind 29,30

28Xue et al., “Refraction wiggles for measuring fluid depth and velocity from
video”. 2014.

29Majumdar and Tedrake, “Robust Online Motion Planning with Regions of
Finite Time Invariance”. 2012.

30Moore, “Robust Post-Stall Perching with a Fixed-Wing UAV”. 2014.
103

Moving forward

Pushbroom stereo:

I Search multiple depths

I Check for false positives
I Track obstacles
I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Pushbroom stereo:
I Search multiple depths

I Check for false positives
I Track obstacles
I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Pushbroom stereo:
I Search multiple depths

I Check for false positives

I Track obstacles
I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Pushbroom stereo:
I Search multiple depths

I Check for false positives
I Track obstacles

I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Pushbroom stereo:
I Search multiple depths

I Check for false positives
I Track obstacles
I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Pushbroom stereo:
I Search multiple depths

I Check for false positives
I Track obstacles
I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Pushbroom stereo:
I Search multiple depths

I Check for false positives
I Track obstacles
I Check along a planned trajectory

I GPU implementation
I Small OpenCL capable GPUs have just entered the market

104

Moving forward

Safe operation of small autonomous aircraft in clutter with:

I Fast, agile flight

I Provably safe control with perception in the loop

I Deep integration of accurate vision systems

105

Moving forward

Safe operation of small autonomous aircraft in clutter with:

I Fast, agile flight

I Provably safe control with perception in the loop

I Deep integration of accurate vision systems

105

Moving forward

Safe operation of small autonomous aircraft in clutter with:

I Fast, agile flight

I Provably safe control with perception in the loop

I Deep integration of accurate vision systems

105

Moving forward

Safe operation of small autonomous aircraft in clutter with:

I Fast, agile flight

I Provably safe control with perception in the loop

I Deep integration of accurate vision systems

105

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control, more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?

I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control, more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control, more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision

I control
I closed loop system

Good answers for control, more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control

I closed loop system

Good answers for control, more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control, more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control,

more to do for vision systems

106

Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control, more to do for vision systems

106

Contributions

1. Pushbroom stereo for high-speed obstacle detection

2. Control algorithms for integrating (1) in the loop

3. Demonstration of the fastest MAV flying in complex obstacles
with only onboard sensing and computation to date

107

Contributions

1. Pushbroom stereo for high-speed obstacle detection

2. Control algorithms for integrating (1) in the loop

3. Demonstration of the fastest MAV flying in complex obstacles
with only onboard sensing and computation to date

107

Contributions

1. Pushbroom stereo for high-speed obstacle detection

2. Control algorithms for integrating (1) in the loop

3. Demonstration of the fastest MAV flying in complex obstacles
with only onboard sensing and computation to date

107

Everything is open source:

I Flight code:

I github.com/andybarry

I Our lab’s simulation and analysis environment (Drake)

I drake.mit.edu

108

github.com/andybarry
drake.mit.edu

Everything is open source:

I Flight code:
I github.com/andybarry

I Our lab’s simulation and analysis environment (Drake)

I drake.mit.edu

108

github.com/andybarry
drake.mit.edu

Everything is open source:

I Flight code:
I github.com/andybarry

I Our lab’s simulation and analysis environment (Drake)
I drake.mit.edu

108

github.com/andybarry
drake.mit.edu

Acknowledgements

A huge number of people helped make this possible.

Advisor: Russ Tedrake
Thesis committee: Bill Freeman, Nick Roy

Labmates Collaborators CSAIL
Ani Majumdar Helen Oleynikova Ron Wiken
Pete Florence Jacob Izraelevitz Mieke Moran
John Carter John Rom Bryt Bradley
Tim Jenks Nadya Peek Mark Pearrow
Benoit Landry Gabriel Klabin Adam Conner-Simons
Andy Marchese Dave Barrett Abby Abazorius
Hongkai Dai Mark Chang Kathy Bates
Joseph Moore MURI team
Zack Jackowski
the entire Robot Locomotion Group

Fourth East, EC Houseteam, Olin scope team

Mom, Dad, Katya, and Jenny

109

