
. .

. .



Ph.D. Thesis Defense:
High-Speed Autonomous Obstacle
Avoidance with Pushbroom Stereo

Andrew Barry

1

Robot Locomotion Group
Massachusetts Institute of Technology



2



3



This thesis:

I 100% on-board perception

I 100% on-board computation

I No prior knowledge of the environment
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Hard for the Right Reasons

Significant novelty required to fly around trees:

1. Fast, lightweight sensing

2. Fast control, integrated with sensing

3. Platform that can support (1) and (2)
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Related works
Huge progress in the last 15 years:

I Larger UAVs 1,2

2

I Max takeoff weight 94kg (145 times heavier than our aircraft)

1Gavrilets et al., “Flight test and simulation results for an autonomous
aerobatic helicopter”. 2002.

2Scherer et al., “Flying Fast and Low Among Obstacles”. 2007.
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Related works
I Micro aerial vehicles, or MAVs (under ∼ 5kg)
I Highly aggressive trajectories in motion capture 3,4,5

(3)

(5)

3Mellinger and Kumar, “Minimum snap trajectory generation and control
for quadrotors”. 2011.

4Hehn and D’Andrea, “A flying inverted pendulum”. 2011.
5Barry et al., “Flying Between Obstacles with an Autonomous Knife-Edge

Maneuver”. 2014.
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Related works

I Flight through obstacles with a known map 6

I Environment not known until runtime 7

(6) (7)

6Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

7Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.

8



Related Work

Micro Aerial Vehicle (MAV) obstacle avoidance:
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Planning and Control

Good ideas exist:

I Differential flatness 8,9

I Nonlinear model predictive control (MPC) 10

I Trajectory libraries 11,12

I Time-varying linear quadratic regulators for stabilization
(TVLQR) 13

8Sira-Raḿırez and Agrawal, Differentially Flat Systems. 2004.
9Mellinger and Kumar, “Minimum snap trajectory generation and control

for quadrotors”. 2011.
10Singh and Fuller, “Trajectory generation for a UAV in urban terrain, using

nonlinear MPC”. 2001.
11Frazzoli, Dahleh, and Feron, “Robust hybrid control for autonomous

vehicle motion planning”. 2000.
12Stolle and Atkeson, “Policies based on trajectory libraries”. 2006.
13Tedrake et al., “Learning to Fly like a Bird”. 2009.
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Sensing

Non-visual sensors:

I LIDAR

I localization in a map 14

I Kinect / active IR sensors

I indoor exploration 15

14Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.

15Michael et al., “Collaborative mapping of an earthquake-damaged building
via ground and aerial robots”. 2012.
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Vision

I Monocular vision
I offboard depth estimation and control through a forest 16

I Embedded optical flow (optical mice sensors)
I high rate, low resolution obstacle detection 17

(16) (17)

16Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

17Beyeler, Zufferey, and Floreano, “Vision-based control of near-obstacle
flight”. 2009.
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Stereo Vision

I On MAVs for a while now 18,19

I generally too slow for fast flight

Fast stereo vision:

I GPU stereo 20

I FPGA stereo 21,22

18Hrabar et al., “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. 2005.

19Byrne, Cosgrove, and Mehra, “Stereo based obstacle detection for an
unmanned air vehicle”. 2006.

20Yang and Pollefeys, “Multi-resolution real-time stereo on commodity
graphics hardware”. 2003.

21Honegger et al., “Real-time velocity estimation based on optical flow and
disparity matching”. 2012.

22Honegger, Oleynikova, and Pollefeys, “Real-time and Low Latency
Embedded Computer Vision Hardware Based on a Combination of FPGA and
Mobile CPU”. 2014.
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Contributions

1. A novel, fast stereo algorithm for obstacle detection

2. High-speed control algorithms for integrating vision

3. A demonstration platform
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Stereo vision
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Block-Matching Stereo Vision

Left Right
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Issue: this search takes a long time.

I On flight hardware: 5-10
frames per second

I Quad core ARM, 1.7Ghz
I 376x240 grayscale image

010 fps: 1.2m / frame
120 fps: 0.1m / frame

ODROID-U3 computer
(image courtesy Hardkernel co., Ltd.)
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Idea: Don’t do the search

Instead, ask: is this pixel block 10 meters away?

19



Pushbroom Stereo

Left Right
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Pushbroom Stereo

I Aircraft is moving faster than almost anything in the
environment

D
etection area

v

?

?

?
??

?

?
?
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Visual Horizontal Invariance

Issue: Horizon exhibits substantial visual horizontal invariance.

I On the 5x5 pixel block level

Left Right

?

22



Filtering Visual Horizontal Invariance
What is different about these false-positives?

I They have another match nearby.

Strategy: Search for a second match at the disparity
corresponding to distances > 15 meters away.

I In practice, calibration is not perfect, so search many
possibilities near that region

Detections on horizon

Without invariance filter. With invariance filter.
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Pushbroom stereo implementation

120 frames per second

I Fully multithreaded

I Single-instruction
multiple-data (ARM
NEON SIMD)

I Leaves 1x computer
available for control
processing

ODROID-U3 computer
(image courtesy Hardkernel co., Ltd.)

24



Note: all flights have an onboard safety tether

25





False-Positive Benchmark

= detection at 5 meters

27



False-Positive Benchmark

Benchmark against OpenCV’s block-matching stereo:

I Walk on the ground,
collecting 23,000+ frames

I various outdoor
environments and
lighting conditions

I Run pushbroom stereo and
OpenCV block-matching

I Compute minimum 3D
distance from pushbroom
to BM stereo points
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lighting conditions
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False-Positive Benchmark

On over 23,000+ frames:

I Pushbroom stereo
produces points
within:

I 1.0 meters of
StereoBM 71.2%
of the time

I 2.0 meters of
StereoBM 81.0%
of the time
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False-Negative Benchmark

I “Opposite” of the false-positive
approach: compute distance from BM
stereo to pushbroom

I Run only on flight data (requires
hand-labeling for StereoBM)
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False-Negative Benchmark
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False-Negative Benchmark

I Pushbroom stereo
misses points that
Stereo BM detects
by:

I 1.0 meters of
StereoBM 67.6%
of the time

I 2.0 meters of
StereoBM 91.3%
of the time
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Onboard state estimation

Goal: GPS denied

I Start with an open source state estimator (Kalman filter)23

I Add inputs for:

I Barometric altimeter

I Pitot tube airspeed
sensor

23Bry, Bachrach, and Roy, “State estimation for aggressive flight in
gps-denied environments using onboard sensing”. 2012.
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Onboard state estimation

Good estimation of:

I altitude

I roll

I pitch

I yaw

I forward speed

I climb rate

I angular rates

Limited ability to estimate:

I absolute x and y positions

I sufficient for pushbroom stereo
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26 MPH 147 ft
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26 MPH 147 ft
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Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning
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Trajectory Libraries

I Precomputed trajectories

I Choose trajectory to execute online

I Used on other robots for some time 24,25,26

24Atkeson, “Using Local Trajectory Optimizers to Speed Up Global
Optimization in Dynamic Programming”. 1994.

25Dey et al., “Vision and Learning for Deliberative Monocular Cluttered
Flight”. 2015.

26Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016.
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Building trajectories
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Building trajectories

41



A model-based approach

Model-based design allows:

I Optimization of trim conditions, trajectories, and controllers

I Easy conversion to other airframes

I Safety verification
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Aircraft model

Nonlinear model: ẋ = f ( x , u )

I state vector
I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector
I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle
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I state vector
I 12 states (x)

I x , y , and z
I roll, pitch, and yaw
I derivatives of those 6 states

I control vector
I 3 inputs (u)

1. left control surface
2. right control surface
3. throttle

43



Aircraft model

Nonlinear model: ẋ = f ( x , u )
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Aircraft model

ẋ = f (

state︷︸︸︷
x , u︸︷︷︸

control input

)

flat-plate dynamics
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Control about a trim condition

Straight and level flight:

ẋ = f ( x , u )

x =
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
roll pitch yaw

ẋ =
[
ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸

accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T
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Searching for a trim condition

find

state and control input︷ ︸︸ ︷
x0,u0

s.t.

accelerations = 0, ⇐ 6 nonlinear constraints

u0 ≥ umin, ⇐ 3 linear constraints

u0 ≤ umax ⇐ 3 linear constraints

giving x0 and u0
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Stabilizing the trim condition

Using standard nonlinear control techniques:

x̄ = x︸︷︷︸
current state

− x0︸︷︷︸
desired state

ū = −K︸︷︷︸
LQR gain

x̄

u︸︷︷︸
control input

= ū + u0

With our model, we can linearize about the trim condition

I (Taylor approximate our nonlinear model)

giving: ˙̄x = Ax̄ + Bū

allowing us to use linear control
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Manual / auto





Autonomous Takeoff

Set ż > 0:

(don’t change the gains)

ẋ =
[

ẋ ẏ ż φ̇ θ̇ ψ̇ ︸ ︷︷ ︸
accelerations

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]T

forward velocity
climbing

giving x0 and u0

51



Autonomous Takeoff

Set ż > 0:
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Dynamic Maneuvers
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Dynamic Maneuvers

Not a trim condition
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Dynamic Maneuvers

Two options for finding an open-loop trajectory:

1. Trajectories from manual flights

2. Trajectory optimization
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Trajectories from manual flights

57





Trajectory optimization

I Optimize over x(t) and u(t) to find an open loop trajectory
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Knife-edge: x , y , and z tracking
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Dotted vertical
lines: trajectory
change



Knife-edge: roll, pitch, and yaw
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Knife-edge: control actions
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Outline

Sensing:

I Pushbroom stereo for obstacle detection

I Inertial, airspeed, and barometric sensors for state estimation

Control:

I Trajectory libraries

I TVLQR feedback control

I Online planning
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Picking a good trajectory online

1. Is current trajectory in collision?

2. If yes, for each trajectory:

2.1 Compute minimum distance between time-sampled trajectory
and point cloud

2.2 Reject if penetrates the ground

3. Execute trajectory with maximum distance to point cloud

I Makes a decision within 18.9ms
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Experiments

67



Experimental plan

(autonomous modes in blue)

Takeoff from
catapult
launcher

Control
(no throttle) Clear cable Climb

Cruise
/ avoid

Manual
landing
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Autonomous takeoff from launcher
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Autonomous obstacle avoidance

72









Analysis

Used a simple trajectory library:

# Description Type Length Produced
1 Straight Trim ∞ Model
2 Climb Trim ∞ Model
3 Takeoff (no throttle) Trim ∞ Model
4 Gentle left Trim ∞ Model
5 Gentle right Trim ∞ Model
6 Left jog Dynamic 2.45s Flight data
7 Right jog Dynamic 2.49s Flight data
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x , y , and z tracking
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Roll, pitch, and yaw
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Add a chase plane:

Autonomous plane

Manual chase plane

82







Aggregate Analysis

Over 16 successful flights:

I 1.5km flown autonomously

I 7,951 stereo matches
detected

I 163 trajectories executed

I 131 seconds in autonomous
mode

I with an average speed of
12.1m/s (27mph)
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3 environments:
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89

Obstacles
(closer)

Obstacles
(farther)



Failure Analysis

Obstacle type Total flights Successes Success ratio
Artificial 4 4 100%
Pair of trees 4 4 100%
Many trees 18 8 44%

I Failures were split between vision and control equally:
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Failure Analysis: Vision

Failure Type Occurrences
Vision failures 5

Failed to see obstacle 1
Poor calibration 2
No video data / unknown vision failure 2
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Failure Analysis: Vision
Failed to see obstacle a combination of:

1. Low contrast obstacles (grey leaves over sky)

2. High angular rate occludes obstacle until it is closer than 10m
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Failure Analysis: Control

Failure Type Occurrences
Control failures 5

Insufficiently rich maneuver library 2
Trajectory initial state 2
Loss of control 1

93



Insufficiently rich maneuver library

I No “turn 90◦“ trajectory available

94



Trajectory initial state

I Known issue: our trajectories only start with level flight

I Potentially surprising: failure when aircraft is already rolled
in the direction of future travel.

An example:

1. Start rolled left

2. Choose to execute a left turn

3. First control action is:

hard right roll
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Moving forward

Trajectory libraries:
I Multiple starting states in trajectory library
I Verification for switching trajectories like 27

(27)

27Majumdar and Tedrake, “Funnel Libraries for Robust Realtime Feedback
Motion Planning”. 2016. 102



Moving forward

Wind:

I Onboard wind sensing 28

I Control through wind 29,30

28Xue et al., “Refraction wiggles for measuring fluid depth and velocity from
video”. 2014.

29Majumdar and Tedrake, “Robust Online Motion Planning with Regions of
Finite Time Invariance”. 2012.

30Moore, “Robust Post-Stall Perching with a Fixed-Wing UAV”. 2014.
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Moving forward

Pushbroom stereo:

I Search multiple depths

I Check for false positives
I Track obstacles
I Check along a planned trajectory

I GPU implementation

I Small OpenCL capable GPUs have just entered the market
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Moving forward

Safe operation of small autonomous aircraft in clutter with:

I Fast, agile flight

I Provably safe control with perception in the loop

I Deep integration of accurate vision systems
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Moving forward

Flight experiments are expensive

Can we build models that include vision and control?
I systematically find and correct failure modes for:

I vision
I control
I closed loop system

Good answers for control, more to do for vision systems
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Contributions

1. Pushbroom stereo for high-speed obstacle detection

2. Control algorithms for integrating (1) in the loop

3. Demonstration of the fastest MAV flying in complex obstacles
with only onboard sensing and computation to date
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Everything is open source:

I Flight code:

I github.com/andybarry

I Our lab’s simulation and analysis environment (Drake)

I drake.mit.edu
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