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Abstract—This paper presents our work in solving one
of the weakest links in 802.11-based indoor-localization: the
training of ground-truth received signal strength data. While
crowdsourcing this information has been demonstrated to be a
viable alternative to the time consuming and accuracy-limited
process of manual training [2], one of the chief drawbacks is
the rate at which a system can be trained. We demonstrate
an approach that utilizes users’ calendar and appointment
information to perform interactionless training of an 802.11-
based indoor localization system. Our system automatically
determines if a user attended a calendar event, resulting
in accuracy comparable to our previously published large-
scale crowdsourced deployment. We find that no other user
interaction is necessary to train the system to that level of
accuracy when calendar data are available. In ideal conditions,
this technique can reduce training time by over a factor of six.

Keywords-Location measurement; calendar; crowdsourcing;
localization; location representation; location-based services

I. INTRODUCTION

As computing becomes increasingly mobile, location
systems, and the applications that leverage them, become
more a part of everyday life. With the proliferation of
laptops, sensor-laden smartphones, a blanket of wireless
access points, and hybrid localization techniques, consumers
are beginning to demand location-aware capabilities of their
hardware and software. For most of these devices, localizing
outdoors with GPS is accurate and provides good coverage.
But once indoors, or in an otherwise GPS-denied environ-
ment, coverage and accuracy suffer dramatically. Commer-
cial solutions, such as those from Skyhook Wireless [13],
attempt to provide location by using a combination of GPS,
cell-tower triangulation, and 802.11-based techniques. In
GPS-denied environments, the localization relies primarily
upon a database of access point signatures acquired by a
fleet of 802.11-scanner-equipped vehicles that are limited to
scanning from public roads. Therefore, while the quality of
location data may be adequate in and around some public
indoor spaces, private spaces—large corporate offices for
instance—will not necessarily be well covered.

To localize accurately indoors, most proposed systems
catalog the received signal strength (RSS) of 802.11 access-
points throughout an indoor space, and use those signatures
to compare against a user’s current signal scan results to
determine location [5], [4], [1], [15]. Most systems require
an extensive manual training phase in order to achieve usable

accuracy. We proposed a crowdsourced system [2], similar
to [14], [3], that requires very little interaction and minimal
dedicated training time, yet achieves very high (room-level)
accuracy. One of the oft-cited drawbacks of crowdsourced
data is the long effective training time required to achieve
good results. In effect, it is the chicken and the egg problem:
without good manual training data, users will not utilize
(and therefore train) the system; but without users utilizing
the system (and actively providing training data), the system
will not improve its accuracy.

In this work, we propose a novel solution to this “cold
start” problem. By overlaying calendar and appointment
data that is tagged with location information (such as a
meeting room or office), every report from a user’s device
will be automatically bound to a location. Thus, instead of
requiring a user to manually associate semantically-relevant
room information with a signal scan (fingerprint), we do
so automatically. Because users’ calendars are not perfectly
accurate, we treat every calendar/RSS pair as a noisy sensor.
Our use of a clustering algorithm allows us to determine
when a user attended or skipped an event, enabling us to
extract accurate location data.

II. RELATED RESEARCH

There has been a rich history of published work that
attempts to solve the indoor localization problem. Beginning
with the Active Badge [15] and Cricket [12] systems,
researchers were able to demonstrate reasonable room-level
localization. However, these systems required specialized
hardware that had to be location-bound and installed by
trained personnel.

The growing ubiquity and dense coverage of 802.11
access points saw researchers use them as fixed-location
radio beacons. Microsoft’s RADAR [1], and later Haeberlen,
et. al. [4], show successful room-level indoor localization
using just 802.11 signal strength information. These ap-
proaches, while accurate, require the system to be trained
to create a database of location and signal strength tuples.
This necessitates a substantial up-front investment in time
and effort, something that may be a barrier to adopting
an indoor localization system. Many more infrastructure-
focused approaches are described in [5].

The focus of research then shifts to alleviating the burden
of up-front training and high infrastructure costs. Intel Re-



search demonstrated an algorithm that can estimate location
through proximal sensing, and expands its known area with
continued use [7]. While the initial cost of this system is
minimal, the time required to achieve acceptable localization
accuracy and wide coverage is high.

Closer to our own work, in approaches described by
Teller et. al. [14] and Bolliger [3], training and correction
data are collected using a crowdsourced approach rather
than via trained personnel. Instead of triangulating estimated
absolute positions, these approaches estimate position by
returning symbolic representations of physical spaces. This
is accomplished by comparing wireless beacon scans to
stored fingerprints of signal strengths collected at user-
annotated locations. The advantages of crowdsourced data
sources are obviating the requirement for significant up-front
training, and quality training of the system by users in actual
physical places of interest.

Unfortunately, purely crowdsourced training data has one
significant drawback: the acquisition of training data is com-
pletely dependent on user participation. In the next section,
we describe our novel approach to solving this “cold-start”
problem without requiring any separate intervention from
the user.

III. INTERACTIONLESS TRAINING WITH CALENDARS

Almost every medium- to large-scale organization occu-
pies some sort of dedicated physical space; from a floor of a
larger building, an entire building, to even an entire campus
spanning several buildings. It is not uncommon for these
organizations to employ some sort of shared calendaring
mechanism, such as Microsoft Exchange, Google Calendar,
or Lotus Notes, to help their employees both coordinate
work and find one another for interactions. In the latter, the
calendar can almost serve as a sensor [9]—providing room-
level localization information with some degree of certainty.

Instead of relying on users to manually associate a vector
of signal-strengths in signal space with a semantically-
relevant physical space, we can automate training by using
the location field of shared appointments in users’ calendars
as the physical space annotation for each signal scan. In the
ideal case users’ mobile devices, such as laptops and smart-
phones, would be loaded with signal scanning software, and
every user would share accurate and complete appointments
in their calendars. With this approach, as people move
around to different physical locations to attend scheduled
meetings, the system would be trained with accurate data
automatically.

There are several benefits to this approach. Most impor-
tantly, the “cold-start” issue is largely eliminated. With no
infrastructure costs other than the installation of software,
users will train the system with accurate data as they
progress through their normal day without changing their
behavior. With a wide deployment of scanning software, the
system will be able to localize accurately in all visited spaces

almost immediately. Secondly, this approach no longer re-
quires any user intervention other than allowing software to
be run in the background of their mobile devices to scan
and report to a central server. In a sense, it is a modified
form of crowd-sourcing, requiring no actual interaction
from the crowd. Finally, this approach will continually
provide new localization data. With the right filtering or
clustering mechanisms, the system can continually adapt to
changes in the environment, such as the movement of access
points, deployment of new access points, the reconfiguring
of physical spaces, and the addition of new physical spaces.

Calendar-based training does have some limitations, how-
ever. The most obvious is the reliance on location-annotated,
shared calendar appointments. If users do not utilize this
field in their appointments, or if users do not share their
appointment data, system accuracy will suffer. In particular,
if a meeting of many people has no annotation of location,
that space will not be trained. However, the lack of calendar
data would have to be widespread among users to signifi-
cantly affect the system. As long as there are some users
with annotated and shared appointment data that utilize that
room, the space will be successfully trained given enough
time.

We note that relying on appointment event locations
causes the localizer to succeed only in areas where users
have specified these events. Locations without such events,
such as warehouses, corridors, factories, residence halls, or
apartment complexes will exhibit particularly poor perfor-
mance. Thus, a calendar-trained localizer is most applicable
in an office or other structured environment where users
regularly schedule appointments and share their calendars.

Perhaps more serious than a lack of data, however, is
the case when a user annotates an appointment, but does
not take their mobile device to that location. If we treated
each calendar/scan intersection as valid training data, this
would become a problem. Fortunately, we demonstrate that
we can successfully detect and mitigate this situation by
employing a clustering algorithm to filter inbound data. So
long as we have a plurality of users in the annotated location,
the algorithm will ignore these false data.

What cannot be accounted for easily is if all attendees at
a meeting with annotated calendars hold the meeting at a
different location than noted in the appointment. Since there
is no convenient mechanism to override the calendar data
other than every attendee changing the appointment location
information in their calendar, the system will incorrectly
annotate the wrong location. This, however, can be mitigated
using the same clustering technique. If there are enough
correct localizations in the new location, the moved meeting
will be ignored. And even if the new meeting location is
incorrectly trained, with enough correct training data, the
cluster will eventually move to be associated with the correct
location.



IV. EXPERIMENTAL DESIGN

To demonstrate the viability of our system, we perform
two experiments. In the first, Playback Simulation, we com-
bine our extensive existing localization database (from [2])
with calendar data from our users. We simulate, over time,
the training of our system with only calendar/fingerprint
intersections—exactly as if we had deployed a calendar-
based training system from the beginning—and compare the
results with our previous crowdsourced results.

In the second experiment, Ideal Deployment Simulation,
we motivate a more likely use case: that of wide-scale de-
ployment within an organization that has more consistently
location-annotated calendar data, such as a corporate office.
We compare these results to all of our previous results.

A. Playback Simulation

We chose to implement this experiment using our cur-
rently running localization system’s recorded wireless access
point data (tagged with a user ID) and publicly available
calendar archives. Using logged data presents an issue,
however, in that it is time invariant. Theoretically we could
access all two years of data to perform correlations which
are not possible when training the system in real time.
To emulate a deployed system, we perform all tests over
a period of simulated time. As the simulated time moves
forward, more data becomes available to the localizer based
on when users actually provided valid calendar/fingerprint
intersections. In this way, we assess the localizer’s accuracy
as it would have appeared throughout the past two years.

To determine appointment and wireless data intersections,
we capture a user’s wireless scan data during the entirety of
his or her appointments’ durations. We expand appointments
that include repetition to consider every instance of the
event. One might consider limiting the time range that
appointments correlate to scan data to reduce error when
users are late or leave early, but we find that the signal-
space clustering algorithm is adequate for this task.

To test our system’s performance we captured signal
strength data in every unlocked and accessible room in the
academic building. In each room we recorded two wireless
scans and the true room number. These data allow us to
determine the true accuracy of our system and compare
the performance of the calendar-trained system to the user-
trained system.

It is important to note that users do not use a completely
consistent naming schema for rooms, although many users
label rooms in a form similar to “AC 204,” where “AC” is
consistent and the room number varies. We chose to filter
our data to include only rooms labeled in this way, although
in the future work section we describe our thoughts on
extending this parser to garner both denser and better labeled
data.

B. Ideal Deployment Simulation

The Playback Simulation does not necessarily demon-
strate the expected use-case, as the existing data was trained
based on opt-in usage of a small subset of our community.
In contrast, we anticipate the benefit of using our calendar-
based approach is for new installations of localization sys-
tems into organizations that utilize a calendaring system
throughout the entire organization. In order to demonstrate
the potential effectiveness of our approach, we simulate an
idealized environment.

One idealized environment might be a corporate setting,
determined both by the personnel and their behavior, as
well as the physical spaces. We envision employees of this
organization to utilize company-issued mobile devices—
both smartphones and laptops—have average work days
that include some meetings with others, and have location-
annotated appointments in their calendars. Deployment of
the system then only consists of installing a scanning and
reporting application on all devices. We argue that with
managed IT services and an expectation of calendar usage,
these assumptions are within reason for any organization that
would consider deploying a localization system.

In this simulated environment, we will show that we
can achieve very high rates of accuracy in an extremely
short time span with nearly zero investment in training
and infrastructure. In essence, we obtain all the benefits of
crowdsourced data without the long time-lag often associ-
ated with the approach.

We choose to use our institution’s course schedule to
simulate this type of environment. For one semester, we
determined when and where every class was taught along
with each classes’ enrollment information. We then ran four
simulations, assuming that 10%, 25%, 50%, and 100% of
students were using our system. In each case, we assumed
that 35% of participating users did not attend lecture. In this
way, we simulated the high data-density we expect to occur
in a corporate environment while retaining an appropriate
amount of erroneous reports.

To provide our simulated students with ground-truth data,
we used the combination of our user and calendar generated
data. Whenever a simulated student “gathered” data, we
copied the appropriate room’s data from those sources.
For the 35% of users localizing in incorrect locations, we
selected a random point.

As in our existing system, each simulated user localized
every 5 minutes during all events regardless of if he or she
was attending. With these data providing a simulated ground
truth over time, we performed the same operations as in
the Playback Simulation, including signal-space clustering,
localization, and accuracy testing.

V. SYSTEM ARCHITECTURE

As in [2], we use a client-server architecture to perform
localizations. Clients capture data and calendar information



which are transmitted to a server that determines ground
truth, trains the system, and estimates locations. We extract
location data from the users’ calendars which, when com-
bined with relevant wireless signal strength data, is used to
train the localizer. Thus, to be used as training data, we
require an event to be ongoing while signal strength scans
are recorded.

A. Deployment Site

While we hypothesize that this system would perform best
in a corporate setting, we use a college campus to perform
our study. Olin College is a small residential engineering
college with approximately 300 students and a campus
encompassing over 300,000 square feet. Classes take place
almost exclusively in a single building, so we limit our test
to that area where calendar events are dense. We collect
calendar data from a shared Microsoft Exchange system and
wireless network data from students who chose to partici-
pate in the previous study focused on active user-entered
localization data. To participate, students run a small client
program on their notebook computer that records wireless
access point data along with a user ID and timestamp.

B. Localization Method

Like in [2], [1], we use a received signal strength (RSS)
indicator to perform a simple nearest neighbor search in
signal space for localization. Essentially, the localizer tra-
verses every known data-point and computes the Euclidean
distance in signal space to the point under consideration. The
localizer returns the point corresponding to the minimum
computed distance. We chose to continue using this localizer
to show that the interactionless component of the system
does not require a specialized localization algorithm, and
could easily be extended to the more accurate and complex
systems like those in [6] and [11].

C. Calendar Integration

To acquire calendar data, we accessed users’ publicly
shared Microsoft Exchange calendars, converted them into
the standard iCal format, and imported the iCal files into
the system. While our users run Microsoft Outlook, this
conversion step generalizes the system, allowing it to be
used with almost any modern calendaring application. Each
appointment entry provides us with some or all of the
following: a user ID, a time range, and a location string.
Calendar appointments that do not include all of these
elements lack a critical piece of data and are thus not useful
for training.

1) Calendar/802.11 Intersection: In addition to a user
ID, a time span, and a location string, an 802.11 scan
must have occurred during the appointment for it to be
useful as training data. As our localizer software running on
both laptops and Android-powered mobile devices reports a
wireless signal strength fingerprint once every five minutes,

we are able to capture, on average, twelve points per hour
of appointments.

2) Calendar Filtering via Signal-Space Clustering: Users
are not always located where their calendar indicates. Cal-
endars are often double-booked, users do not attend all
meetings, meetings move without being updated in the
system, and users do not bring their wireless devices to all
appointments. Our crowdsourced localization system reports
that users are located where calendar events specify 68% of
the time. Therefore, to extract useful training data, we must
filter the calendar appointments.

As noted in [10], even without an existing localization
mechanism, the collected wireless signal strength data pro-
vides insight. In general, a user either attends a meeting in
the location specified, or does not. If not, the user’s actual
location has little correlation to where the appointment
indicates. Thus, given a reasonable meeting attendance rate,
we find that clusters of accurate data are easy to find in signal
space. We are able to prune almost all events where users
do not attend meetings, providing us with interactionless and
accurate training data.

To filter the raw data, we use a clustering algorithm based
on distance in signal space. We have 76 wireless access
points on campus so we cluster in 76-dimensional space.
For each location we compute a mean vector by taking
the arithmetic mean of each component in the individual
vectors. We then calculate the Euclidean distance between
each vector and the mean vector. Unlike in [10], the inherent
size of a calendar dataset allows us to use a majority
voting system to identify outliers, implemented by rejecting
entries with a distance greater than its associated location’s
median. This is a harsh filter but, like [8], we have found
that relatively few erroneous points can significantly reduce
accuracy. Listing 1 shows this algorithm in pseudo code
form.

for location in All Locations :
meanVector = ComputeMeanVector(All Events[location])

for event in All Events[ location ]:
distances .append(EuclideanDistance(event , meanVector))

medianDistance = ComputeMedian(distances)

for event in All Events[ location ]:
if EuclideanDistance (event , meanVector) < medianDistance:

Filtered Events .append(event)

Listing 1. Simple Signal Space Clustering Algorithm.

To simulate a time-dependence, we ran this algorithm
once for each day, retraining and retesting the system on
each iteration.

VI. RESULTS: PLAYBACK SIMULATION

A. Time-Based Analysis

We measure the quality of a localization system with two
statistics, coverage and accuracy. Coverage describes the
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Figure 1. Accuracy of calendar-trained system over time. Dark gray
indicates fraction of localizations resulting in a correct prediction. Middle
gray indicates fraction of predictions in a correct or adjacent room, and
light gray indicates fraction of localization predictions on the correct floor.
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Figure 2. Fraction of rooms with training data over time. As users have
meetings in new locations, the localization system’s coverage improves.
The dramatic increase near Day 145 is a result of students returning to
campus with a new calendar schedule. Note the strong correlation between
coverage and accuracy (Figure 1).

fraction of locations with training data, while accuracy de-
notes how often the localizer correctly determines position.

We find that the system achieves 50% room-level accuracy
(85% in adjacent rooms) after 148 days of active use (Figure
1). We define the system to be in active use when users are
resident on campus, thus excluding intersession periods such
as winter break. When the system is not in active use, its
accuracy neither rises nor falls.
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Figure 3. Comparison of correct or adjacent room accuracy over time
between calendar-trained (solid) and user-trained (dashed) systems. Note
that, unlike the user-trained system, the calendar based localizer is not
monotonically increasing because its additional data is not always correct.
The horizontal segments in the user-trained accuracy (before Day 100) are
related to development periods when the system was not in active use.

Of the 28 rooms we localized, 89% had at least one
signature bound to that location by the end of our exper-
iment. Figure 2 shows how coverage in the calendar-trained
localizer changes with time. After 372 days of active use,
no signatures for new rooms were added to the database.

Three rooms remained without coverage: a biology lab,
a professor’s research lab, and a mechanical project space.
These rooms had no data because students rarely use their
computers there as there are very few classes, labs, or
meetings scheduled there.

B. Comparison to User-Trained Localization

The user-trained system took 18 days of active use to
localize to the correct room in 50% of trials and 47 days
of active use to localize to the correct room or an adjacent
room in 85% of trials. Figure 3 compares the accuracy over
time of this crowdsourced localizer with the calendar-trained
localizer. Note that Figure 3 includes development periods
(visible as plateaus near the beginning of the plot) where the
user-trained system was unusable and therefore we do not
regard them as periods of active use. The above statistics do
not include these days.

The accuracy of the user-trained system stabilized after
55 days of active use, at 70% room-level accuracy and 90%
including adjacent rooms. The calendar-based system proved
slower than its user-trained counterpart, requiring 381 days
of active use to achieve equivalent room-level accuracy. It
took only 71 days of active use, however, to achieve adjacent
room-level accuracy within 10% of the user-trained system.

The localizer’s accuracy decreases when data are added



that cause the clustering algorithm to fail. This occurs
when a significant number of users are not present at their
appointments but are still providing data (for instance, by
leaving their laptop running at a different location), skewing
the values of location cluster means.

One phenomenon observed in the crowdsourced system is
that users seem to lose interest, and the number of new binds
decreases. As a result, accuracy plateaus. In contrast, the
calendar-trained localizer continually accumulates training
data (Figure 4). Thus, the training set is in constant flux,
ensuring that the system will adapt to variations in the
environment such as new network access points, additional
furniture, changing architecture, and even relabeled rooms.

We find that a disadvantage of the calendar-based system
is that, while long-term accuracy continually improves,
short-term accuracy fluctuates. The system’s constant stream
of new data implies that some incorrect data is also being
added, potentially reducing accuracy until enough correct
data overcomes the issue. Users rarely submit bad data to the
user-trained localizer, explaining why user-trained accuracy
rarely decreases.

Accuracy in the calendar-trained localizer does drop after
Day 373. This could be for several reasons. As already
mentioned, since the calendar-trained system’s data is auto-
matically harvested rather than explicitly entered by users,
bad data is much more likely. Wireless access points are
sometimes moved by network administrators to improve
wireless performance. This change not only invalidates old
data points but also makes the clustering filter incorrectly
discard valid data points. The access points also have auto-
matic and manual gain control, the use of which has a similar
effect as physically moving the access points. Nevertheless,
the localizer adapts and recovers after 37 days of active use,
and after 11 more days of active use the localizer is more
accurate than it was before the dip.

C. Clustering Analysis

Our clustering filter is a deliberately aggressive algorithm,
discarding approximately one third to one half of all incom-
ing data. Ideally we would evaluate the algorithm’s perfor-
mance based on ground-truth data, but we do not have a
mechanism to determine when users attended their calendar
events. As a substitute, we use our user-trained localization
system as ground truth, but only compute statistics for floor-
level accuracy to mitigate the impact of the user-trained
system’s localization error on our results.

On the final day of simulation, we find that the algorithm
accepts 85% of the valid data and discards 76% of the
incorrect data, discarding 50% of total data. Clearly, we
discard a significant amount of correct, useful data. This
state is acceptable, however, because incorrect training data
is highly detrimental while collecting more intersections
costs little.
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Figure 4. Comparison between calendar-based and user-based binds
over time. Notice that as the system becomes more accurate, users bind
less. Thus, we expect the user-trained system to become less reactive
to environment changes as it ages, while the calendar-based system will
continuously acquire new data. We are not surprised to see few binds for
both systems in the summer and January terms when students are not on
campus.

D. Experimental Details

We recorded over 1.8 million wireless scans over a period
of more than two years from 278 users, of which 99 of
had published calendars. These shared calendars contained
47,955 events and 93,005 single event-occurrences (many
events repeat). Users with public calendars accounted for
725,533 wireless scans with only 85,237 (11.7%) of these
scans overlapping with a calendar event. We were able
to parse location data on 28,732 (33.7%) of these. We
expect that in a more favorable environment, such as in an
institution-sponsored program, the amount of useful raw data
available would be substantially higher.

Based on the localization data from our previously pub-
lished system, we find that users are in the location that
their calendar predicts in approximately 65% of cases. We
evaluate our clustering algorithm based on that system’s
output to estimate how successful the algorithm is. In other
words, we can use our previous system to determine how
well our clustering algorithm is performing.

E. User Behavior

In our calendar data we see a less typical mass interaction
curve than in our previous crowdsourced approach. One
quarter of users provide most of the data, however this
group is much larger than that in other mass interaction
applications[16]. We find that 25% of users provide 52.3% of
all calendar data while 25% contribute 56.3% of all wireless
network data. These data are more level than those of our
user-trained system and of MIT’s crowdsourced localization
system [14].



We find that recurring appointments are critical to the
system’s success, accounting for 84.8% of all appoint-
ment/wireless data intersections and 87.1% of intersections
determined to be in the correct place by the user-trained
system. Users’ individual reliability varies greatly, giving an
approximately uniform distribution when considering users
with a significant number of intersections.

VII. RESULTS: IDEAL DEPLOYMENT SIMULATION

Accuracy, measured only for rooms where classes are
scheduled, increases much more quickly in the data-rich
environment. As the number of participants increases, the
rate of accuracy increase improves in parallel (Figure 5). We
note that our signal-space clustering successfully mitigates
the increasing number of incorrect location updates that
accompanies the additional users.

With 100% participation, we find that the system takes 8
days to achieve full accuracy at the room level, compared
to the approximately 150 days for the non-ideal system. As
expected, it takes longer with fewer users, taking 15, 50, and
64 days for 50%, 25%, and 10% participation, respectively.
Notably, we find that to achieve stable accuracy at the floor
level, all simulations require less than one week of training
data.

Even in the case of only 10% user participation, we find
that the data-rich environment achieves similar accuracy in
less than one half of the time required for the user-trained
system (15% of the time required for the demonstrated
calendar-based system). With increased participation, this
duration decreases further, to less than 15% and 5% of the
user-trained and calendar-trained systems respectively.

While the simulation’s time-to-accuracy exceeds that of
the two other methods, its final-value accuracy does not. This
result stems from the simulator’s reliance on the combined
data of the user and calendar trained systems. The final
accuracy of the user and calendar trained systems is limited
to all available data, a limitation that the simulator faces as
well.

VIII. FUTURE WORK

A. Integration with Other Data Sources

There are a multitude of other data sources that could
improve our system’s localization performance. We are
considering integration with a room-scheduling system and
a student-course scheduling system, both of which provide
user-identified location information at a specific time. We are
also considering data sources that do not traditionally supply
location information, such as a desk telephone. Answering
the telephone indicates that a user is most likely at his
or her desk, allowing us to bind all data close in signal
space to the user’s workspace. We are considering this
same strategy for capturing data from desktop computer idle
times, screensavers, instant messaging, and even printing
applications.
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(b) 25% participating
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Figure 5. Simulation results for 10%, 25%, 50%, and 100% of users
participating. Solid bold indicates correct room, dashed indicates adjacent
rooms, and solid thin indicates correct floor. Notice that the system becomes
accurate more quickly as the number of users increases.



It is important to note that this type of bind can be
extremely helpful to the system. Users rarely schedule
meetings at their own desk, but there is likely to be a large
number of wireless scans in the area, since the user spends
a significant amount of time there. Thus, extracting a bind
from these non-traditional data sources allows us to correlate
the past data taken at the user’s desk, dramatically increasing
the number of binds and thus accuracy in the area.

B. Calendar Correlation

A second method of improvement might stem from cor-
relating calendars. We propose studying users’ calendars
in groups to determine which meetings users are likely to
attend. Employees are very likely to attend meetings with
their boss, but less likely to attend meetings where they
are less important. Such correlation could be as complex
as necessary or as simple as the difference between the
user being in the “To” or “CC” field in an appointment
notification.

C. User-Defined Location Labels

We might expand our coverage by removing the restriction
that appointments must label locations in a defined format.
However, user-defined names introduce the potential for
duplicate location labels, uninformative names, etc. Signal-
space analysis might allow us to identify duplicate labels,
which could help mitigate the issue.

D. Identifying Unnamed Locations

A final technique we are considering allows the system
to name locations that never appear in calendar data. These
locations tend to be areas where one works alone, such
as an office or dormitory. We propose correlating long
stays in these areas as a way to determine their status.
For example, at a workplace, a laptop might be left on
overnight in a user’s office. A college student might turn
his or her laptop off late at night before going to sleep.
If these cases occurred in a predictable and identifiable
manner, we might name them “[Username’s] Office” or
“[Username’s] room,” depending on application. We believe
that this type of inference, combined with new data sources
and improved correlation systems, can significantly improve
the performance of the localizer described here.

IX. CONCLUSION

We have proposed a novel method for training an indoor
wireless localization system that utilizes location-annotated
calendar data to perform interactionless training of the
system. Our experiments have shown that this approach
yields equal or better accuracy than crowdsourced training
approaches, yet requires a fraction of the training time. We
have performed experimental verification of our approach on
a working database of location fingerprints, and have moti-
vated and demonstrated the performance of more typically
expected deployment scenarios.

We believe this approach is the beginning of a larger
set of novel approaches that incorporate a wide range of
inputs as location sensors to further improve localization
accuracy, reduce training time, and provide even more robust
localization in all locales.
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